After almost 7 years of reliable service, my Asus RT-N66R started failing. I bout an Asus RT-AC66U B1 as replacement. The two routers look nearly identical from the outside, but the new one is actually slightly larger so it would not fit exactly in the same place. Which was fine, because I felt maybe my previous placement didn't have enough ventilation and contributed to the old router's demise.

For better space utilization, I wanted the router to stand vertically. But in the interest of providing more cooling, I didn't want it to be wall-mounted against an airflow-constricting surface. Making a vertical stand became a quick-and-dirty design and 3D printing project.

As soon as it started printing I realized I overlooked an something important: the base of the stand is too thin for proper print bed adhesion. The was compounded by the fact that it sat near print bed corners, which tends to be a little cooler than the center of the bed. A few layers into the print, one corner started to lift as expected. Looking at the design, I guessed a base with a lifted edge will still be sufficient. So I decided to let the print continue rather than abort the print and waste the filament.

I was rather surprised at how far it continued to lift! I thought after a few millimeters there would have been enough plastic to hold things rigid, and that expectation was true for one corner. (Left side in the picture below.) But the other corner just kept lifting and lifting, even starting to peel the main body off the bed. I was starting to get worried the whole thing would pop off. Fortunately it finally stabilized after lifting a little over 21mm.

Router stand bed lift

This was outside my experience, as I usually abort a print before the lift got nearly that bad. But my original guess was correct: the stand worked just fine even with rear corners asymmetrically lifted from the print bed. What I have in hand is good enough for my purposes so I'll use it as-is, but the public Onshape document is here if anyone wants to evolve this design to make it less prone to lifting.