The first test run for CNC engraving was done on a piece of MDF. Mainly because the piece was already in the machine, surfaced, and ready to go. It was also a forgiving material in case of mistakes, but MDF doesn't show engraved details very well.

The next session increased the difficulty level: now we have a piece of scrap polycarbonate plastic ("Lexan") for our next engraving test. This material is interesting because it has different properties than PMMA (a.k.a. acrylic.) The latter is a popular material for laser cutting but also very brittle, very vulnerable to cracking under stress. Polycarbonate plastics are much more robust and a better choice when physical strength is important in a project.

Acrylic is also popular for laser engraving projects, but polycarbonates do not engrave or cut easily under laser power due to its different properties. It is not particularly friendly to CNC machining, either, but we'll start with an engraving project before we contemplate milling them.

Thankfully the first session was a success, and illustrates some of the challenges of working with such materials. The toughness of the material also meant the little strings of cut chips want to remain attached to the stock, making cleanup a hassle. Upon close examination, we saw the engraved groove is slightly deeper on the left side than the right. Proof our scrap MDF working surface is not flat which was not a surprise, but "flat enough" within 4-8 thousands of an inch (1-2 sheets of normal office paper) which was better than expected.

Even with its imperfections, performance on this test indicates the machine is capable of engraving on materials we can't use in the laser cutter. That might be useful, and a good example of how we can still learn lessons on this machine despite its flawed Z-axis and other problems. We should still fix them, of course, but the machine can already be useful while we work on those improvements.

https://twitter.com/Regorlas/status/1224587141130272769