While I was in Onshape CAD designing our goose neck work holding clamps, I also tackled a few other to-do items on the 3D-printable accessory list. The top of the list was building a way to keep extra collets accessible on the machine. Our CNC spindle came packaged with a 1/8" ER11 collet, which we swapped out for a 1/4" collet when we wanted a stouter cutter. We didn't have a good place to keep the temporarily unused 1/8" collet and, rolling around on the tabletop, we were constantly at risk of losing it.

I thought it was a good project to practice designing plastic's flexibility to my advantage instead of constantly seeing it as a disadvantage. I've had several projects along these lines before, but my interest was renewed by Amy Qian's demo board she brought to show off at Supercon.

https://twitter.com/amy_makes_stuff/status/1188686510620438528

There are two ways I wanted to apply this concept. First, I wanted a holding mechanism that can snap into an extrusion rail and stay there without use of tools or fasteners. Second, I wanted a way to hold the collet so that it is held securely by default (not fall out or be dropped easily) but can be removed easily on demand. Again without tools or fasteners.

Here is the first draft of a flexible clip for installation into extrusion beam, this design was too flexible and fell out of the extrusion rail easily. More iterations followed, hunting for the most secure hold possible while still making it possible to insert into the rail.

Extrusion slot clip

Separately, I started designing a flexible cover for the collet. The test piece for each mechanism evolved separately until I was happy with both designs, then they were integrated into a single piece incorporating both mechanisms.

Collet holder evolution

With the success of this holder, I took the lessons of a flexible extrusion beam mount and applied the concept to a few additional 3D printed accessories.