The Panasonic UJ-867 is a slot loading optical drive. This particular unit was salvaged from a dead Dell XPS M1330 previously featured when I pulled its power port, and disassembled its battery, plus trying to use its AC power adapter to charge a Neato vacuum. A web search indicated this drive was better known as a drive used in certain models of Apple MacBooks. An optical drive typically has a carriage for its laser assembly driven by a stepper motor, and that carriage is my target for further stepper motor experimentation.

Panasonic UJ-867 20 Norton inside

When the lid was removed, the age of this device was clear: it still held a disk! The Windows edition of Norton AntiVirus confirms this was not from a MacBook. The year also spoke to the vintage of this drive.

Panasonic UJ-867 30 mechanicals top

With the disk removed, we can see all the mechanical linkages. This was far more than I had expected, because I had never taken apart a slot-loading drive before. Many of the pieces were involved in the slot loading mechanism, which is in the "disk inserted" position. (The Norton disk was not properly ejected - I removed the lid and popped it off!) Various mechanisms in this position block fasteners making it difficult to take apart.

Panasonic UJ-867 40 eject motor

Tracing through the mechanical bits, I guessed this motor is the heart of the drive loading and ejection mechanism. It is a simple DC motor so I should be able to put power on these pins to move the mechanism to their eject state. However, there are a few parts nearby that I might bump into if I powered from the top, so to be safe I soldered some pins from the bottom.

Panasonic UJ-867 50 eject motor wired

Applying power to this motor did indeed run through the ejection sequence, even though I've already removed the disk. Now it became fairly straightforward to take apart the drive.

Panasonic UJ-867 60 eject motor gearbox

Almost all of the pieces are specifically tailored to this usage, making reuse unlikely. But I do enjoy seeing the eject motor gearbox run. This is a distraction, though. The optical carriage was the goal and that was removed for the next step: connecting it to my Arduino + A4988 test breadboard.