When I purchased my batch of PIC16F18345 chips, Microchip offered 20% discount off standard price for its corresponding Curiosity development board (DM164137). I thought it might be interesting and added it to my order, but I hadn't pulled it out of its packaging until today.

Today's motivation is the mTouch button built onto the board. As part of my investigation into projects I might tackle with the Hackaday Superconference 2017 camera badge, I found that the capacitive touch capabilities of the MCU is unused and thought it might be interesting to tie it into the rest of the camera badge. Before I try to fabricate my own touch sensors, I thought it'd be a good idea to orient myself with an existing mTouch implementation. Enter the Curiosity board.

Looking over the board itself and the schematics on the user's guide, I noticed a generous scattering of zero ohm surface-mount resistors. If I had seen zero ohm resistors in isolation, I would have been completely mystified. Many electronics beginner like myself see a zero ohm resistors as something that does nothing, take up space, and there's no point. For those beginners, a web search would have led them to this StackExchange thread, possibly the Wikipedia article, or maybe the Hackaday post.

Curiosity Zero OhmsBut I was not introduced to them in isolation - I saw them on the Curiosity board and in this context their purpose was immediately obvious: a link between pins on the PIC socket and the peripheral options built on that board. If I wanted to change which pins connected to which peripherals, I would not have to cut traces on the circuit board, I just had to un-solder the zero ohm resistor. Then I can change the connection on the board by soldering to the empty through-holes placed on the PCB for that purpose.

This was an illuminating "Oh that makes sense!" introduction to zero ohm resistors.