There are several things I can work on for my PIC-controlled LED practice exercise. The software is far from done, with lots of features I still want to implement. But I'm turning my focus to the hardware for the moment. Now that I've built a few iterations of my circuit on the prototyping breadboard, I have some confidence it'll work for whatever software I write. So I'm going to look into translating the simple design into an actual circuit board.

When I started learning electronics many years ago this was a daunting step that I never took. Back then making my own circuit board meant buying sheets of copper-clad circuit boards. I would then need the ability to drill precise holes in this board for the component pins and I would need to etch my circuit into the copper layer. Either via precise mechanical removal or a chemical etching processes. This DIY fabrication was required because it was not economical for commercial circuit board manufacturers to do low-volume production for hobbyists.

Thankfully, the internet has enabled a solution. We now have circuit board fabricators who batch up many little projects from around the world into low volume production runs. The local electronics hobbyists speak well of OSH Park, who bills by the square inch and each order gets three copies of the circuit board. There's enough demand for these services that OSH Park has competitors, both domestic and overseas, but I'm happy to start with the known quantity that has worked for people I've talked to.

The downside for this economical service is time: because of the job batching pipeline, it takes around two weeks from order submission to parts in my hand. Since I have more time than money to devote on these learning projects, I'm happy to accept this trade-off. It also means I should start the first iteration of my circuit board now: once I send the order, I will have two weeks to polish my software. (Or get distracted by other projects.)

kicad_logo_smallWhat I need to do to start this process is to translate my breadboard circuit design into something OSH Park can fabricate. This also used to be a huge barrier: industrial-level circuit board design software carried industrial-level price tags. Fortunately there's a free open-source option in KiCad, whose development received a significant boost from CERN. It's still considered beta software in active development but the current builds are good enough for me to get started.

It's time to learn KiCad!