Plastic Bottle Upcycling with TrussFab
[caption id="attachment_6318" align="aligncenter" width="1023"] Image from TrussFab.[/caption]
A perpetual limitation of 3D printing is the print volume of the 3D printer. Any creations larger than that volume must necessarily consist of multiple pieces joined together in some way. My Luggable PC project is built from 3D printed pieces (each piece limited in size by the print volume) mounted on a skeleton of aluminum extrusions.
Aluminum extrusions are quite economical for the precision and flexibility they offer, but such capabilities aren't always necessary for a project. Less expensive construction materials are available offering varying levels of construction flexibility, strength, and precision depending on the specific requirements of the project.
For the researchers behind TrussFab, they chose to utilize the ubiquitous plastic beverage bottle as structural component. Mass produced to exact specifications, the overall size is predictable and topped by a bottle cap mechanism necessarily precise to seal the contents of the bottle. And best of all, empty bottles that have successfully served their primary mission of beverage delivery are easily available at quantity.
These bottles are very strong in specific ways but quite weak in others. TrussFab leverages their strength and avoids their weakness by building them into truss structures. The software calculates the geometry required at the joints of the trusses and generates STL files for them to be 3D printed. The results are human-scale structures with the arbitrary shape flexibility of 3D printing made possible within the (relatively) tiny volume of a 3D printer.
Presented recently at ACM CHI'17 (Association for Computing Machinery, conference for Computer-Human Interaction 2017) the biggest frustration with TrussFab is that the software is not yet generally available for hobbyists to play with. In the meantime, their project page has links to a few generated structures on Thingiverse and a YouTube video.